A Semiparametric Model for Bayesian Reader Identification
نویسندگان
چکیده
We study the problem of identifying individuals based on their characteristic gaze patterns during reading of arbitrary text. The motivation for this problem is an unobtrusive biometric setting in which a user is observed during access to a document, but no specific challenge protocol requiring the user’s time and attention is carried out. Existing models of individual differences in gaze control during reading are either based on simple aggregate features of eye movements, or rely on parametric density models to describe, for instance, saccade amplitudes or word fixation durations. We develop flexible semiparametric models of eye movements during reading in which densities are inferred under a Gaussian process prior centered at a parametric distribution family that is expected to approximate the true distribution well. An empirical study on reading data from 251 individuals shows significant improvements over the state of the art.
منابع مشابه
Bayesian Analysis of Varying Coefficient Models and Applications
ZHAOWEI HUA: Bayesian Analysis of Varying Coefficient Models and Applications. (Under the direction of Hongtu Zhu and David B. Dunson.) The varying coefficient models have been very important analytic tools to study the dynamic pattern in biomedicine fields. Since nonparametric varying coefficient models make few assumptions on the specification of the model, the ‘curse of dimensionality’ is an...
متن کاملA Bayesian Semiparametric Analysis of the Reliability and Maintenance of Machine Tools
A Bayesian semiparametric proportional hazards model is presented to describe the failure behavior of machine tools. The semiparametric setup is introduced using a mixture of Dirichlet processes prior. A Bayesian analysis is performed on real machine tool failure data using the semiparametric setup, and development of optimal replacement strategies are discussed. The results of the semiparametr...
متن کاملThe Bayesian reader: explaining word recognition as an optimal Bayesian decision process.
This article presents a theory of visual word recognition that assumes that, in the tasks of word identification, lexical decision, and semantic categorization, human readers behave as optimal Bayesian decision makers. This leads to the development of a computational model of word recognition, the Bayesian reader. The Bayesian reader successfully simulates some of the most significant data on h...
متن کاملBayesian semiparametric Wiener system identification
We present a novel method for Wiener system identification. The method relies on a semiparametric, i.e. a mixed parametric/nonparametric, model of a Wiener system. We use a state-space model for the linear dynamical system and a nonparametric Gaussian process model for the static nonlinearity. We avoid making strong assumptions, such as monotonicity, on the nonlinear mapping. Stochastic disturb...
متن کاملBayesian Elastic-Net and Fused Lasso for Semiparametric Structural Equation Models
SUMMARY: Structural equation models are well-developed statistical tools for multivariate data with latent variables. Recently, much attention has been given to developing structural equation models that account for nonlinear relationships between the endogenous latent variables, the covariates, and the exogenous latent variables. [Guo et al. (2012)], developed a semiparametric structural equat...
متن کامل